Extracting the Gaussian from integrals of cosines

Peter Haggstrom
mathsatbondibeach@gmail.com
https://gotohaggstrom.com

February 6, 2020

1 Background

At first blush it seems unlikely that the Gaussian could be somehow conjured into existence from the cosine function, but Paul Lévy does precisely that in his book *Lecons d’Analyse Functionnelle* ([1], pages 261-265) in the context of deriving expressions for the volume of a sphere in \(n \) Euclidean dimensions. Norbert Wiener specifically credits Lévy for the inspiration to apply Lévy’s approach to infinitely many dimensions in the context of Wiener’s development of Brownian motion. ([2], page 132).

Lévy deduces the volume of an \(n \) dimensional sphere from the following integral:

\[
I_n = \int_0^{\pi/2} \cos^n \theta \, d\theta
\]

A straightforward integration by parts gives:

\[
I_n = \left[\sin \theta \cos^{n-1} \theta \right]_0^{\pi/2} + (n-1) \int_0^{\pi/2} \cos^{n-2} \theta \, \sin^2 \theta \, d\theta
\]

\[
= (n-1) \int_0^{\pi/2} \frac{1}{2} \cos^n \theta \, (1 - \cos^2 \theta) \, d\theta
\]

\[
= (n-1) (I_{n-2} - I_n)
\]

Therefore we get the recurrence relation:

\[
I_n = \frac{n-1}{n} I_{n-2}
\]

To develop the formula for general \(n \) we start with \(I_1 \) and \(I_2 \):

\[
I_1 = \int_0^{\pi/2} \cos \theta \, d\theta = \left[\sin \theta \right]_0^{\pi/2} = 1
\]

\[
I_2 = \int_0^{\pi/2} \cos^2 \theta \, d\theta = \int_0^{\pi/2} \frac{1}{2} (\cos 2\theta + 1) \, d\theta = \frac{1}{2} \left[\frac{1}{2} \sin 2\theta + \theta \right]_0^{\pi/2} = \frac{\pi}{4}
\]
We now calculate I_{2p} and I_{2p+1} separately (using (4) and (5)):

\[
I_{2p} = \frac{2p - 1}{2p} I_{2p-2} = \left(\frac{2p - 1}{2p}\right) \left(\frac{2p - 3}{2p - 2}\right) I_{2p-4} = \cdots \tag{6}
\]

\[
= \frac{1}{2p(2p-2)(2p-4)\ldots 4} \frac{(2p-1)(2p-3)(2p-5)\ldots 3}{2p(2p+1)(2p-1)(2p-3)\ldots 5} \pi
\]

Similarly:

\[
I_{2p+1} = \frac{2p + 1}{2p + 2} I_{2p-1} = \left(\frac{2p}{2p+1}\right) \left(\frac{2p - 2}{2p - 1}\right) I_{2p-3} = \cdots \tag{7}
\]

\[
= \frac{2p(2p-2)(2p-4)\ldots 4}{(2p + 1)(2p-1)(2p-3)\ldots 5} \pi
\]

It follows from (6) and (7) that:

\[
I_{2p}I_{2p+1} = \frac{1}{2p+1} \frac{\pi}{2} \tag{8}
\]

and

\[
I_{2p-1}I_{2p} = \frac{1}{2p} \frac{\pi}{2} \tag{9}
\]

[Note there is a typo in (1), page 263 where Lévy has $I_{2p+1}I_{2p} = \frac{1}{2p} \frac{\pi}{2}$]

It follows that for any positive integer n:

\[
I_nI_{n-1} = \frac{\pi}{2n} \tag{10}
\]
For large n, I_n and I_{n-1} are comparable so that (10) implies that:

$$I_n \sim \sqrt{\frac{\pi}{2n}}$$ \hspace{1cm} (11)

The integral reduction formula (3) essentially forms the basis for how Wallis’s product formula is derived in calculus courses (although $\sin^n x$ is used).

Note that since for $x \in (0, \frac{\pi}{2})$, $\cos^{n+2} x < \cos^{n+1} x < \cos^n x$ for all $n \geq 1$, it follows that:

$$I_n > I_{n+1} > I_{n+2}$$ \hspace{1cm} (12)

Now for $\alpha \in (0, \frac{\pi}{2})$ we have:

$$\int_{\alpha}^{\frac{\pi}{2}} \cos^n \theta d\theta < (\frac{\pi}{2} - \alpha) \cos^n \alpha$$ \hspace{1cm} (13)

[Note that for $\alpha, \theta \in (0, \frac{\pi}{2})$, $\cos \alpha > \cos \theta$ for $\alpha < \theta$]

Thus as $n \to \infty$, $\int_{\alpha}^{\frac{\pi}{2}} \cos^n \theta d\theta \to 0$ since $\cos^n \alpha \to 0$.

Because $I_n = \int_0^\alpha \cos^n \theta d\theta + \int_{\alpha}^{\frac{\pi}{2}} \cos^n \theta d\theta$ this means that I_n can be approximated by $\int_0^\alpha \cos^n \theta d\theta$ for large n. However, Lévy notes that to have a finite fraction of I_n one must have an upper limit on the integral which approaches zero with n. That this is so can be seen from the following graph of $\int_0^\alpha \cos^{1000} x \, dx$:

What this graph demonstrates is that for large n, values of α not much greater than zero give rise to an integral $\int_0^\alpha \cos^n x \, dx$ which quickly approximates I_n, hence to get what Lévy calls a ”finite fraction of I_n” ([1], page 264) one must consider values of α
very close to zero. Hence he chooses an upper limit of the form \(\frac{\alpha}{\sqrt{n}} \) which approaches zero as \(n \to \infty \). By substitution, this leads to:

\[
\int_{0}^{\frac{\alpha}{\sqrt{n}}} \cos^n \theta \, d\theta = \frac{1}{\sqrt{n}} \int_{0}^{\alpha} \cos^n \frac{x}{\sqrt{n}} \, dx = \frac{1}{\sqrt{n}} \int_{0}^{\alpha} e^{-\frac{x^2}{2}} \, dx
\]

Lévy says that for \(x \in [0, \alpha] \), \(\cos^n \frac{x}{\sqrt{n}} \) approaches \(e^{-\frac{x^2}{2}} \) uniformly as \(n \to \infty \). Here is what the approximation looks like for \(n = 10 \):

![Graph showing the comparison between \(\cos^{10} \left(\frac{x}{\sqrt{10}} \right) \) and \(e^{-\frac{x^2}{2}} \).]

The two functions are hard to tell apart from the graph.

The limiting behaviour is justified as follows:

\[
cos^n \frac{x}{\sqrt{n}} = \left(1 - 2 \sin^2 \frac{x}{2\sqrt{n}} \right)^n
\]

\[
= \left(1 - 2 \left(\frac{x}{2\sqrt{n}} \right)^2 \frac{x^2}{4n} \right)^n
\]

\[
= \left[1 - \left(\frac{\sin \frac{x}{2\sqrt{n}}}{\frac{x}{2\sqrt{n}}} \right)^2 \frac{x^2}{2n} \right]^n
\]

But for fixed \(x \), \(\frac{\sin \frac{x}{2\sqrt{n}}}{\frac{x}{2\sqrt{n}}} \to 1 \) as \(n \to \infty \), hence \(\left(1 - \left(\frac{\sin \frac{x}{2\sqrt{n}}}{\frac{x}{2\sqrt{n}}} \right)^2 \frac{x^2}{2n} \right)^n \to e^{-\frac{x^2}{2}} \). That the convergence is uniform is suggested by this diagram below (which is for \(n = 20 \)).
Analytically, the convergence is uniform because, for any \(\epsilon > 0 \) we can find an \(N(\epsilon) \) (to emphasise that \(N \) depends on \(\epsilon \)) such that for all \(n > N(\epsilon) \) and for all \(x \in [0, \alpha] \) we have:

\[
\left| \cos^n \frac{x}{\sqrt{n}} - e^{-\frac{x^2}{2}} \right| < \epsilon
\]

We have that:

\[
\left| \cos^n \frac{x}{\sqrt{n}} - e^{-\frac{x^2}{2}} \right| = \left| 1 - \left(\frac{\sin \frac{x}{2\sqrt{n}}}{\frac{x}{2\sqrt{n}}} \right)^2 \frac{x^2}{2n} - e^{-\frac{x^2}{2}} \right|
\]

\[
\leq \left| e^{-\left(\frac{\sin \frac{x}{2\sqrt{n}}}{\frac{x}{2\sqrt{n}}} \right)^2 \frac{x^2}{2}} - e^{-\frac{x^2}{2}} \right|
\]

\[
= \left| e^{\left(1 - \left(\frac{\sin \frac{x}{2\sqrt{n}}}{\frac{x}{2\sqrt{n}}} \right)^2 \right) \frac{x^2}{2}} - 1 \right|
\]

\[
\leq \left| e^{\left(1 - \left(\frac{\sin \frac{x}{2\sqrt{n}}}{\frac{x}{2\sqrt{n}}} \right)^2 \right) \frac{x^2}{2}} - 1 \right|
\]

Because \(\frac{\sin \frac{x}{2\sqrt{n}}}{\frac{x}{2\sqrt{n}}} \) is an increasing sequence which converges to 1 we can find an \(N(\epsilon) \) sufficiently large so that \(1 - \frac{\sin \frac{x}{2\sqrt{n}}}{\frac{x}{2\sqrt{n}}} < \epsilon' \) for all \(n > N(\epsilon') \). Thus:

\[
1 - \left(\frac{\sin \frac{x}{2\sqrt{n}}}{\frac{x}{2\sqrt{n}}} \right)^2 = \left(1 - \frac{\sin \frac{x}{2\sqrt{n}}}{\frac{x}{2\sqrt{n}}} \right) \left(1 + \frac{\sin \frac{x}{2\sqrt{n}}}{\frac{x}{2\sqrt{n}}} \right) < 2\epsilon'
\]
since $\frac{\sin \frac{x}{\sqrt{n}}}{\sqrt{n}} \leq 1$ for all $x \in [0, \alpha) \subset [0, \frac{\pi}{2}]$ and all n.

Using (18) we can therefore dominate the RHS of (17) as follows:

$$
\left| e^{\left[1 - \left(\frac{\sin \frac{x}{\sqrt{n}}}{\sqrt{n}}\right)^2\right]} - 1 \right| < e^{\epsilon'} - 1 \leq e^{\frac{\epsilon^2}{4}} - 1 < e^{\frac{\epsilon'}{2}} - 1 \quad \text{(19)}
$$

Thus recalling (16), we need $e^{\frac{\epsilon'}{2}} < 1 + \epsilon$ so we need $\epsilon' < \frac{2}{\epsilon^2} \ln(1 + \epsilon)$. Suppose we set $\epsilon = 0.001$ then we need to find $N(\epsilon')$ such that $1 - \frac{\sin \frac{x}{\sqrt{n}}}{\sqrt{n}} < \epsilon'$ for all $n > N(\epsilon')$.

Since $\epsilon' = 0.003998$ Mathematica tells us that $N = 258$ will ensure that $1 - \frac{\sin \frac{x}{\sqrt{n}}}{\sqrt{n}} < 0.0003998$. The graph below visually demonstrates that $N = 258$ is the threshold value:

Thus for $n > 258$ we can ensure that $\left| \cos^n \frac{x}{\sqrt{n}} - e^{-\frac{x^2}{2}} \right| < 0.001$ for all $x \in [0, \frac{\pi}{2}]$.

Taking $x = 0$, $x = 1$ and $x = \frac{\pi}{2}$, as an example, Mathematica gives the following values for $\Delta[x, n] = \left| \cos^n \frac{x}{\sqrt{n}} - e^{-\frac{x^2}{2}} \right|$:

- $\Delta[0, 259] = 0 < 0.001$
- $\Delta[1, 259] = 0.0001953 < 0.001$
- $\Delta[\frac{\pi}{2}, 259] = 0.0005713 < 0.001$
- $\Delta[1, 2000] = 0.000025275 < 0.001$
- $\Delta[\frac{\pi}{2}, 2000] = 0.000073886 < 0.001$

So the convergence that looked uniform is uniform.

Lévy uses this basic result in the context of deriving formulas for the volumes of n dimensional spheres and then applying that to determining certain probabilities - hence the link with Wiener’s Brownian motion work.
2 References

[1] Paul Lévy, Lecons d’Analyse Functionnelle, Gauthier-Villars, Paris, 1922. There is no English translation of this book as far as I know but the French version can be accessed here: https://archive.org/details/leconsdanalysefo00levyrich

3 History

Created 06 February 2020